USA- Researchers at the University of Maryland (UMD) have sequenced the complete genome for einkorn wheat, the world’s first domesticated crop, a development that will help identify genetic traits like tolerance to diseases, drought, and heat that can be reintroduced to modern wheat.
“The most exciting thing about having this genome sequenced is that einkorn is truly a model species that we can use for research, not only as a reference for bread wheat, but other small grains like rye, barley, and oats,” said Adam Schoen, a co-first author of the paper and a Ph.D. student working under professor Vijay Tiwari in the Department of Plant Science and Landscape Architecture at the University of Maryland.
The international team of researchers was led by University of Maryland (UMD) scientists and the findings were recently published in the journal Nature.
According to the researchers, einkorn was farmed as early as 12,000 years ago, but as agriculture spread around the world, people replaced it with bread wheat, which they selectively cultivated for traits like large grain size and easy threshing.
However, over centuries of cultivation, bread wheat lost its natural resistance to drought, heat, and pests.
Einkorn has not undergone intense selective breeding, so it still has many of its resilient properties. Additionally, both wild and domesticated varieties of einkorn still exist.
Following this completed gene mapping process, Tiwari is leading a large-scale breeding program that aims to reintroduce resilience genes into bread wheat.
By comparing the einkorn genome with the genome of bread wheat, sequenced in 2018, researchers can now look for mismatches, narrowing the potential targets for genetic traits that differ between the ancient and modern grains.
The new study sequenced the domestic and wild variety of einkorn, identifying about 5 billion base pairs that make up individual genes and placing them in the correct order.
Since completing the study, UMD researchers have already begun identifying economically important genes, like those for grain size, and selectively breeding them into bread wheat.
The reference genome also enables scientists to trace the evolutionary history of einkorn wheat, which provides insight into human history.
Another significant advance from the study was the speed with which researchers sequenced the entire einkorn reference genome. Although the bread wheat genome took more than a decade to sequence, the current study took a little more than a year. The researchers credit the collaboration of international experts in the wheat breeding consortium Tiwari leads.
“This is the first step,” Tiwari said. “We are not only breeding einkorn genes into bread wheat, but we now have a chance to improve einkorn to make it easier to grow and harvest, because it is healthier and more nutritious than bread wheat.”
For all the latest grains industry news from Africa, the Middle East and the World, subscribe to our weekly NEWSLETTERS, follow us on LinkedIn and subscribe to our YouTube channel